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ABSTRACT

Spatial intermittency in decaying kinetic Alfvén wave turbulence is investigated to determine if it produces non-
Gaussian density fluctuations in the interstellar medium. Non-Gaussian density fluctuations have been inferred from
pulsar scintillation scaling. Kinetic Alfvén wave turbulence characterizes density evolution in magnetic turbulence at
scales near the ion gyroradius. It is shown that intense localized current filaments in the tail of an initially Gaussian
probability distribution function possess a sheared magnetic field that strongly refracts the random kinetic Alfvén
waves responsible for turbulent decorrelation. The refraction localizes turbulence to the filament periphery, and hence
it avoids mixing by the turbulence. As the turbulence decays, these long-lived filaments create a non-Gaussian tail.
A condition related to the shear of the filament field determines which fluctuations become coherent and which decay
as random fluctuations. The refraction also creates coherent structures in electron density. These structures are not
localized. Their spatial envelope maps into a probability distribution that decays as density to the power �3. The
spatial envelope of density yields a Levy distribution in the density gradient.

Subject headinggs: ISM: general — MHD — turbulence

1. INTRODUCTION

Pulasr radio signals probe fluctuations in the local interstellar medium (Armstrong et al. 1981). The broad electron density fluc-
tuation spectrum (Armstrong et al. 1995) is commonly interpreted as a turbulent inertial range. The pulsar signal width yields infor-
mation about fluctuation statistics (Bhat et al. 2004; Sutton 1971). The width scales as R4 (R is the distance to the source), a result
that is incompatible with Gaussian statistics (Boldyrev & Gwinn 2003b). The latter would produce a scaling of R2, while R4 is re-
covered for Levy statistics (Boldyrev & Gwinn 2003a). A Levy-distributed random walk typically consists of a series of small ran-
dom steps punctuated by occasional Levy flights in which there is a single large jump to a new locale. In the context of a pulsar radio
signal propagating through a Levy distribution of electron density fluctuations, a sea of low-intensity density fluctuations would scatter
the signal through a series of small angles. Intermittently, as the signal traversed an intense, localized density fluctuation, it would
scatter through a much larger angle.

The assertion that pulsar signals are dispersed by Levy-distributed fluctuations is a statistical Ansatz validated to some degree by
observation. This Ansatz does not address the difficult and important question of what processes or conditions produce the statistics.
It has been suggested that Levy statistics can emerge from radio signal trajectories grazing the surface of molecular clouds (Boldyrev &
Königl 2006). Here we examine a different mechanism rooted in the turbulent cascade implied by the broad fluctuation spectrum. The
mechanism is intrinsic spatial intermittency, a process known to create non-Gaussian tails in the probability distribution function (PDF).
In Navier-Stokes turbulence, intrinsic intermittency takes the form of randomly dispersed, localized vortex strands, surrounded by
regions of relative inactivity (Kerr 1986). Intermittency is most pronounced at small scales. Intermittency also occurs in MHD tur-
bulence (Grappin et al. 1991). However, the statistical properties of electron density fluctuations in magnetic turbulence are not known.
In this paper, we address the fundamental and nontrivial question of whether electron density can become intermittent in the magnetic
turbulence of the interstellar medium (ISM). The effect on pulse-width scaling requires that additional issues be addressed, and these
will be taken up later.

The question of intermittency in pulsar scintillation is twofold. First, can intermittent electron density fluctuations in interstellar
turbulence achieve the requisite intensity to change the PDF? To some extent, this question has been answered by studies that show
that passive advection and the limitations it places on electron density excitation (as indicated, e.g., by mixing-length arguments) applies
only to scales larger than tens of gyroradii. At smaller scales, the electron density becomes active through kinetic Alfvén wave (KAW)
interactions with magnetic fluctuations, exciting the internal energy to equipartition with the magnetic energy (Terry et al. 2001). Evi-
dence for a transition to KAW dynamics near the gyroradius scale has recently been inferred from solar wind observations (Bale et al.
2005). Since scintillation is dominated by small scales, the regime of kinetic Alfvén interactions is appropriate for studying the in-
termittency potentially associated with the scaling of the pulsar signal width. The second aspect of intermittency in the context of pulsar
signals deals with how isolated structures can form against the homogenizing influence of turbulent mixing in a type of turbulence that
does not involve flow. Virtually all mechanisms proposed for intermittency involve flow or momentum, yet the flow of ions in magnetic
turbulence decouples from small-scale kinetic Alfvén waves, with the interaction of magnetic field and density taking place against a
background of unresponsive ions.

While intermittency has been widely studied in hydrodynamic turbulence (Frisch 1995) and MHD (Politano & Pouquet 1995),
historically the emphasis has been on structure and statistics, not mechanisms. Structure studies have included efforts to visualize
intermittent structures (Head & Bandyopadhyay1981). Quantitatively, measurements of structure function scalings have been made to
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gauge how intermittency changes with scale (She & Lévêque 1994; Politano & Pouquet 1995). Statistical characterizations of intermit-
tency generally postulate a non-Gaussian statistical Ansatz, and the resultant properties are compared with measurements to determine
if the Ansatz is reasonable. These approaches do not address the mechanisms that endow certain fluctuation structures either with
individual longevity or collective prominence, in a statistical sense, relative to other regions in which such structures are not present
(Waleffe 1997). The mechanistic approach is nascent but has already yielded significant insights into the long-standing problem of
subcritical instability in plane Pouseuille flow (Hof et al. 2004).

A starting point for our considerations is simulations of decaying KAW turbulence that show the emergence of coherent, long-lived
current filaments under collisional dissipation of density (Craddock et al. 1991). In these simulations, finite-amplitude fluctuations in
density and magnetic field decayed from initial Gaussian distributions. (The current, as the curl of the magnetic field, was also Gaussian
initially.) The distribution of current became highly non-Gaussian as certain current fluctuations persisted in the decay long past the
nominal turbulent correlation time. The longevity of these filaments enhanced the tail of the PDF, steadily increasing the value of the
fourth-order moment (kurtosis) significantly above its Gaussian value. While the PDF was affected by mutual interactions of filaments
later in the simulation, initially the tail enhancement was dominated by the interaction of filaments with surrounding turbulence and
the lack of mixing of those filaments relative to the rapidly decaying surrounding turbulence. Intermittency was not reported when
resistivity dominated the dissipation. While these simulations showed intermittency in KAW turbulence, non-Gaussian statistics was
demonstrated for current fluctuations, not density. The turbulence decayed bymeans of collisional dissipation of density; the current had
no direct damping. It is not clear what effect this had on density structure formation within the constraints of the resolution of the sim-
ulations. The question of intermittency in density therefore remains open. No mechanism for the intermittency was proposed.

In this paper, we examine analytically the dynamics of structures in density and current and determine how one relates to the other.
Wewill use analysis tools and results developed to understand the emergence of long-lived vortices in decaying two-dimensional (2D)
Navier-Stokes turbulence (McWilliams 1984). For that problem, two-timescale analysis showed that the vortices are coherent and long-
lived because strong shear flow in the outer part of the vortex suppresses ambient mixing by turbulence (Terry 1989; Terry et al. 1992).
The ambient mixing would otherwise destroy the vortex in a turnover time. This mechanism for maintaining the coherent vortex in de-
caying turbulence correctly predicts the observed distribution of Gaussian curvature of the flow field (Terry 2000).

We use two-timescale analysis to describe coherent structure formation in decaying KAW turbulence. The following are obtained:
(1)We identify the mechanism that allows certain current filaments to escape the turbulent mixing that otherwise typifies the turbulence.
Current and density are mixed by the random interaction of kinetic Alfvén waves. This process is disrupted in current filaments whose
azimuthal field has an unusually large amount of transverse shear. This creates a strong refraction of turbulent kinetic Alfvén waves that
localizes them to the periphery of the filament and restricts their ability to mix current and density. (2) We derive a shear threshold
criterion based on this mechanism. It identifies which current filaments escape mixing and become coherent, or long-lived. The cri-
terion relates to theGaussian curvature of themagnetic field, providing a topological construct that maps the intermittency in away anal-
ogous to the flow Gaussian curvature of decaying 2D Navier-Stokes turbulence. (3) We trace the relative effects of the refractive shear
mechanism on current, magnetic field, density, and flux. The magnetic field and density have long-lived, localized fluctuation struc-
tures that coexist spatially with localized current filaments. However, the magnetic field extends beyond the localized current. Like the
magnetic field of a line current, it falls off as r�1. Because the density is equipartitioned with the magnetic field in KAW turbulence, a
similar mantle is expected for the density. This mantle tends to prevent the density kurtosis from rising to values greatly above 3; how-
ever, it is responsible for giving the PDF of density gradient a Levy distribution.

This paper is organized as follows: Section 2 presents the kinetic Alfvén wave model used in this paper. The two-timescale analysis
is introduced in x 3. Section 4 derives the condition for strong refraction, and the resultant refractive boundary-layer structure for
turbulent KAWactivity in and around the coherent filament. The turbulent mixing stresses are determined in x 5, from which the fila-
ment and density lifetimes can be derived. Section 6 discusses the Gaussian curvature and spatial properties of the current and density
structures. The latter are used to infer heuristic PDFs. Conclusions are given in x 7.

2. KINETIC ALFVÉN WAVE MODEL

The shear Alfvén and kinetic Alfvén physics described in x 1 is intrinsic to models of MHD augmented by electron continuity.When
there is a strong mean field, the nonlinear MHD dynamics can be represented with a reduced description (Hazeltine 1993), given by
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and Ĵ = 92
? ̂ = @ 2 ̂/@x2 þ @ 2 ̂/@y2. In the reduced description, the perturbed magnetic field is perpendicular to the mean field and

can be written as b̂/B = : ̂ < z, where z is the direction of the mean field and  ̂ = (Cs/c)eAz /Te is the normalized parallel component of
the vector potential. The flow has zero mean and is also perpendicular to the mean field B. It can be expressed in terms of the electro-
static potential as �:�̂ < z, where �̂ = (Cs/VA)e�/Te is the normalized electrostatic potential. The normalized density fluctuation
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is n̂ = (Cs/VA)ñ/n0, where n0 is the mean density, and � = (c2/4�VA�s)�Sp is the normalized resistivity, where �Sp is the Spitzer
resistivity. Spatial scales are normalized to �s = Cs/�i, time is normalized to the Alfvén time �A = �s/VA, Cs = (Te/mi)

1/2 is the ion
acoustic velocity, VA = B/(4�min0)

1/2 is the Alfvén velocity, and �i = eB/mic is the ion gyrofrequency. Within their limitations (iso-
thermal, incompressible fluctuations), equations (1)Y (4) are valid for scales both large and small compared with the gyroradius, as well
as the intermediate region.

Equation (3) is the electron continuity equation. The advective nonlinearity,:�̂ < z = :n̂, couples electron density fluctuations to the
flow. If there is a nonuniformmean density, advection drives weak density fluctuations of amplitude n̂ � (�/Ln)n0, where � is the scale of
density fluctuations and Ln is the mean density scale length. The continuity equation also contains a compressible nonlinearity, 9kĴ ,
whereby compressible electron motion along magnetic field perturbations provides coupling to the magnetic field. Electrons act on the
magnetic field through parallel electron pressure in Ohm’s law, expressed as 9kn̂ in equation (1). The couplings of magnetic field
and density are weak at scales appreciably larger than the ion gyroradius. On those scales, the advection of electron density is passive
to a good approximation and governs electron density evolution. In the region around � = 10�s, the two nonlinearities in each of
equations (1)Y (3) become comparable (Terry et al. 2001). For � < 10�s,9k n̂ begins to dominate9k�̂ in equation (1) and9kĴ begins
to dominate:�̂ < z = :n̂ in equation (3). This is a very different regime from incompressible MHD, where the magnetic field and flow
actively exchange energy through shear Alfvén waves. In a turbulent cascade approaching the ion gyroradius scale from larger scales, the
energy exchanged between flow and magnetic field in shear Alfvén interactions diminishes relative to the energy exchanged between the
electron density and the magnetic field through the compressible coupling. Consequently, flow decouples from the magnetic field,
increasingly evolving as a go-it-aloneKolmogorov cascade, while electron density andmagnetic field, interacting compressively through
kinetic Alfvén waves, supplant the shear Alfvén waves. Once the kinetic Alfvén wave coupling reaches prominence, the internal and
magnetic energies become equipartitioned,

Ð
n̂2 dV �

Ð
|: ̂|2dV, even if the internal energy is only a fraction of the magnetic energy

at larger scales. If there is no significant damping at the ion gyroradius scale, the large-scale shear Alfvén cascade continues to
gyroradius scales and beyond though kinetic Alfvén waves. The gyroradius scale at which KAWdynamics is active is on the order of
108 cm in the warm ISM. This is small relative to the scale of intermittent flow structures in molecular gas clouds, recently reported to
be on the order of 1018 cm (Hily-Blant et al. 2007). This scale difference is crudely consistent with the highmagnetic Prandtl number
of the warm ISM. The value Pr � 1014 allows very small scales in the ionizedmedium, before dissipation becomes important, relative to
scales of viscous dissipation in the clouds. The gyroradius scale of intermittent KAW structures makes direct visualization in the ISM
difficult.

In the KAW regime, the model can be further simplified by dropping the flow evolution. This leaves a KAWmodel in which electron
density and magnetic field interact against a neutralizing background of unresponsive ions,
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Solutions of this model closely approximate those of equations (1)Y(3) when the scales are near the gyroradius or smaller (Terry et al.
1998). This model assumes isothermal fluctuations, consistent with strong parallel thermal conductivity. Equations (5) and (6) are fluid
equations, and hence Landau-resonant (Howes et al. 2006) and gyroresonant dissipation, which may be important in the ISM, are not
modeled. Ohm’s law has resistive dissipation, and density evolution has collisional diffusion. Depending on the ratio �/�, either of these
dissipation mechanisms can damp the energy in decaying turbulence; however, the damping occurs at small dissipative scales. We will
focus on inertial behavior at larger scales. We assume that mean density is nearly uniform and neglect the last term of equation (5).

The dispersion relation for ideal kinetic Alfvén waves is determined by linearizing equations (5) and (6), neglecting resistive dissipation
� Ĵ , and introducing a Fourier transform in space and time. The result is! = kzk?, where k? = z = 0, or k? ? kz z. If dimensional frequency
and wavenumbers !̃, k̃ z, and k̃? are reintroduced, the dispersion relation is !̃ = VAk̃ z k̃?�s. The wave can be seen to combine Alfvénic
propagation with perpendicular motion associated with the gyroradius scale. TheKAWeigenvector yields equal amplitudes of magnetic
field and the density, �k? k = ibk = nk , with a phase difference of �/2.

In magnetic turbulence, with its hierarchy of scales, kinetic Alfvén waves also propagate along components of the turbulent mag-
netic field. In the reduced description the turbulent field is perpendicular to the mean field, and hence the dispersion relation of these
kinetic Alfvén waves carries no kz-dependence. To illustrate, we isolate such a fluctuation from the mean field kinetic Alfvén wave by
setting kz = 0; with this wavenumber zero, we drop the subscript from k?; we consider a turbulent magnetic field component b̂k0 /B0 =
ik0 < z k0 at wavenumber k0 that dominates the low-k fluctuation spectrum; and we look at the dispersion for smaller scale fluctu-
ations satisfying k 3 k0. The latter conditions linearize the problem, yielding a dispersion relation for kinetic Alfvén waves propagat-
ing along the turbulent field b̂k0 according to ! = ik0 < z = k k0k = (b̂k0 = k/B)k. Reintroducing dimensions, !̃ = VA(bk0 = k̃/B)k̃�s. One
can see that the dispersion is Alfvénic, but with respect to a perturbed field component that is perpendicular to the mean field. Hence
the frequency varies as k̃2�s instead of k̃zk̃�s.

3. TWO-TIMESCALE ANALYSIS

To understand and quantify the conditions under which a coherent current fluctuation persists for long times relative to typical
fluctuations, we examine the interaction of the coherent structure with surrounding turbulence and derive its lifetime under turbulent
mixing. The interaction is described using a two-timescale analysis, allowing evolution on disparate timescales to be tracked (Terry
et al. 1992). The coherent structure, a current filament with accompanying magnetic field and electron density fluctuations, evolves
on the slow timescale under the rapid-scaleYaveraged effect of turbulence. On the rapid scale the filament is essentially stationary,
creating an inhomogeneous background for the rapidly evolving turbulence. Identifying conditions that support longevity justifies
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the two-timescale approximation a posteriori. Simulations suggest the filament is roughly circular. If coordinates are chosen with the
origin at the center of the filament, a circular filament is azimuthally symmetric, while the turbulence breaks that symmetry.

The filament current is localized, and hence its current density becomes zero at some distance from the origin. The localized current
profile necessarily creates a magnetic field that is strongly inhomogeneous. On the rapid timescale over which the turbulence evolves,
this field, which is part of the coherent structure, is essentially stationary. It acts as a secondary equilibrium field in addition to the
primary equilibrium field (which is homogeneous and directed along the z-axis). Turbulence, in the form of random kinetic Alfvén
waves, propagates along both the primary and secondary fields. Because the primary field is homogeneous, its effect on the turbulence is
uninteresting. However, the secondary field is strongly sheared because of the local inhomogeneity created by the structure. Strong shear
refracts the turbulent kinetic Alfvén waves. In the subsequent analysis we will ignore the primary KAW propagation, which we can do
by setting kz = 0, and focus on the refraction of KAW propagation by the secondary magnetic field shear. Strong refraction will be shown
to localize kinetic Alfvénwaves away from the heart of the filament, allowing it to escapemixing and thereby acquire the longevity tomake
it coherent.

With J = 92
? ̂, we apply the separation of long and short timescales to fluctuations in n̂ and  ̂ as follows:

F̂ ¼ F0(r; �)þ F̃(r; �; t); ð7Þ

where the symbol F represents either  or n, with  0 and n0 the flux function and density of the coherent structure and  ̃ and ñ the
turbulent fields of flux and density. The variables for slowly and rapidly evolving time are � and t. The origin of a polar coordinate
system with radial and angle variables r and � is placed at the center of the structure. The structure is assumed to be azimuthally
symmetric. The turbulence evolves in the presence of the structure, and hence it is necessary to specify the radial profile of  0 or,
more explicitly, the profile of the secondary, structure field: 0(r) < ẑ = B�(r)â. As a generic profile for localized current, we adopt a
reference profile that peaks at the origin and falls monotonically to zero over a finite radius a. For simplicity we take the variation to
be quadratic, giving

J0(r) ¼ J0(0)
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These profiles are for reference. Shortly we will introduce a more general description for a filament whose current peaks at the origin
and decays monotonically. The current of the coherent filament is wholly localized within r = a. However, the magnetic field is not
localized but slowly decays as r�1 outside the filament. The quantities in equations (8)Y(9) all evolve on the slow timescale � . The
dependence on � is not notated, because when B� appears in the turbulence equations it is a quasi-equilibrium quantity on the rapid
timescale.

To describe the rapid-timescale evolution and its azimuthal variations we introduce a Fourier-Laplace transform,

F̃(r; �; t) ¼ 1
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where 	0 is the shift of the complex integration path of the inverse Laplace transform. The radial variation of B�(r) creates an in-
homogeneous background field for the turbulence, making Fourier transformation unsuitable for the radial variable. The Laplace
transform is appropriate for turbulence that decays from an initial state. To obtain equations for the slowly evolving fields  0 and n0,
we average the full equations over the rapid timescale t. This is accomplished by applying the Laplace transform to the equations and
integrating over t. The integral selects 	 = 0 as the time average, that is,

Ð
dt f (� , t) =

Ð
dt

Ð
d	(2�i)�1f	(�) exp 	t = f	¼0(�). Ap-

plying this procedure, the evolution equations for the slowly evolving fields are given by
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ñm 0;	 0

�
¼ 0; ð11Þ

@n	¼0(�)

@�
þ 1

2�i

Z þi1þ	0

�i1þ	0
d	 0

X
m 0

��
b̃r(�m 0;�	 0)

@

@r
þ b̃�(�m 0;�	 0)

�
im0

r

���
1

r

@

@r

�
r
@

@r

�
� m02

r 2

�
 ̃m 0;	 0

�
¼ 0; ð12Þ

where b̃r (�m 0;�	 0), b̃�(�m 0;�	 0), nm 0;	 0 , and  ̃m 0;	 0 are understood to depend on the radial variable r; b̃r (�m 0;�	 0) = (�im 0/r) �m 0;�	 0 and
b̃�(�m 0;�	 0) = �(@/@r) �m 0;�	 0 . The correlations hb̃r@ñ/@ri, hb̃�ñi, hb̃r@92 ̃/@ri, and hb̃�92 ̃i, which appear in equations (11) and (12),
are turbulent stresses associated with random kinetic Alfvén wave refraction. Their fast time averages govern themixing (transport) of the
coherent fields. These stresses must be evaluated from solutions of the fast-timescale equations to find the lifetime of the structure.

DENSITY INTERMITTENCY IN ISM TURBULENCE 405No. 1, 2007



The evolution equations for the rapidly evolving turbulent fluctuations are

	 ̃m;	 � B�(r)

�
�im

r

�
ñm;	 þ

1

2�i

Z þi1þ	0

�i1þ	0
d	 0

X
m 0

�
im0

r
 ̃m 0;	 0

@

@r
� i(m� m0)

r

@ ̃m 0;	 0

@r

�
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We have not shown the dissipative terms, in accordance with our focus on inertial scales. The sources contain gradients of n0(r) and
J0(r). These are the density and current of the coherent structure but, unlike  	¼0(�) and n	¼0(�), are not evaluated in the Laplace-
transform domain. Three terms drive the evolution of @ ̂/@t and @n̂/@t in each of these equations. The first term describes linear kinetic
Alfvén wave propagation along the inhomogeneous secondary magnetic field B� of the coherent structure. The second term is the
nonlinearity and describes turbulence of random kinetic Alfvén waves. The third term is proportional to mean field gradients. It is a
fluctuation source via the magnetic analog of advection (:�̂ < ẑ = : = v = : ! : ̂ < ẑ = : ). It yields quasi-linear diffusivities for
the turbulent mixing process. For example, if the kinetic Alfvén wave and nonlinear terms of equation (14) are dropped, the solution is

ñ(i)m;	 ¼
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The superscript (i) indicates that for deriving diffusivities, this density is to be substituted iteratively into the correlations of the turbulent
stresses. From equation (11) these correlations are hb̃rñi = hb̃(i)r ñi þ hb̃rñ(i)i and hb̃�@ñ/@ri = hb̃(i)� @ñ/@ri þ hb̃�@ñ(i)/@ri. Substitution of
equation (15) yields mean turbulent diffusivities for  0. Similarly, if equation (13) is solved by dropping its kinetic Alfvén wave and
nonlinear terms, we obtain

 ̃(i)
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Substituting this solution into the correlations hb̃r92 ̃i = hb̃(i)r 92 ̃i þ hb̃r92 ̃(i)i and hb̃�@92 ̃/@ri = hb̃(i)� @9
2 ̃/@ri þ hb̃�@92 ̃(i)/@ri

of equation (12), mean turbulent diffusivities are obtained for n0. Off-diagonal transport (relaxation of  0 by the gradient of n0) can also
be obtained by substituting equation (16) into hb̃rñi and hb̃�@ñ/@ri. The role of the nonlinear and kinetic Alfvén wave terms omitted
from equations (15) and (16) is to modify the timescale 	 and couple the sources. This is calculated in the next section. The inverse of
	 represents the lifetime of the correlations hb̃rñi, hb̃�@ñ/@ri, hb̃r92 ̃i, and hb̃�@92 ̃/@ri. Generally, the nonlinear terms enhance de-
correlation, increasing the effective value of 	. If the shear in B� is strong, the kinetic Alfvén wave term increases 	 even further.

The role of shear in the kinetic Alfvén wave terms is not explicit but should be, so that it can be varied independently of the field
amplitude B�(r0) at some radial location r0. In explicitly displaying the role of shear we note that if B�(r) � r, as would be true if the
current density J0 were uniform, the kinetic Alfvén wave term is independent of r. In this situation the phase fronts of kinetic Alfvén
waves propagating along B� are straight-line rays extending from the origin. Shear in B�, occurring through nonuniformity of J0,
distorts the phase fronts, as shown in Figure 1. Distortion occurs if B� has a variation that is not linear. From equation (9) we note that
the variation of B� for our chosen structure profile is linear for rTa, with variations developing as r ! a. Therefore, it makes sense
to quantify the shear by expanding B�(r)/r in a Taylor series about some point of interest. Obviously, the shear is zero at the origin and
becomes sizable as r ! a. Expanding about a reference point r0 away from the origin,
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If B�(r) varies smoothly, as is the case for a monotonically decreasing current profile, we can truncate the expansion as indicated in
equation (17) and use that expression as a general current profile. Looking at the kinetic Alfvén terms of equations (13) and (14), the
first term will produce a uniform frequency that effectively Doppler-shifts 	 by the amount imB�(r0)/r0. The second term will describe
KAW propagation in an inhomogeneous medium with its attendant refraction.

4. REFRACTION BOUNDARY LAYER

We rewrite equation (14), substituting the expansion of equation (17), yielding

	ñm;	 þ 	̂92
m ̃m;	 � im(r � r0)

d

dr

�
B�

r

�����
r0

92
m ̃m;	

� 1

2�i

Z þi1þ	0

�i1þ	0
d	 0

X
m 0

�
im0

r
 ̃m 0;	 0

@

@r
� i(m� m0)

r

@ ̃m 0;	 0

@r

�
92

m�m 0  ̃m�m 0;	�	 0 ¼ im

r
 ̃m;	

@

@r
J0(r); ð18Þ
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where

92
m ¼ 1

r

@

@r

�
r
@

@r

�
� m2

r 2
ð19Þ

and 	̂ = imB�(r0)/r0. When d/dr (B�/r)jr0 is large, the shear in B� refracts turbulent KAWactivity. The process can be described using
asymptotic analysis. In the limit that d/dr (B�/r)j r0 becomes large asymptotically, the higher derivative nonlinear term is unable to
remain in the dominant asymptotic balance unless the solution develops a small-scale boundary-layer structure. The layer is a singular
structure. Its width must become smaller as d/dr (B�/r)jr0 becomes larger, otherwise the highest-order derivative drops out of the bal-
ance and the equation changes order. This is the only viable asymptotic balance ford/dr (B�/r)jr0 !1. The boundary layer’s width�r is
readily estimated from dimensional analysis by noting that r � r0 � �r and @92

m ̃m(t)/@r � 92
m ̃m/�r and treating d/dr (B�/r)jr0 � j0

as the diverging asymptotic parameter. The asymptotic balance is

�r j092
m ̃m(t) �

1

a
 ̃m(t)

92
m ̃m(t)

�r
( j0 ! 1); ð20Þ

yielding

�r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
 ̃m=aj0

q
( j0 ! 1): ð21Þ

The length�r is the scale of fluctuation variation within the coherent current filament. In the simulations, the filaments were identified
as regions of strong, localized, symmetric current surrounded by turbulent fluctuations. Consequently, �r represents a fluctuation
penetration depth into the structure. We derived the layer width�r from linear and nonlinear kinetic Alfvén wave terms operating on
flux in the density equation. Identical operators apply to n in the flux equation. Hence,�r is the width of a single layer pertaining to
both the density and current fluctuations of refracted KAW turbulence. This structure is shown schematically in Figure 2. The above
analysis indicates a single layer width and gives its value. It does not give the functional variation of current and density fluctuations
within the layer, either relative or absolute.

In the simpler case of intermittency in decaying 2D Navier-Stokes turbulence, statistical closure theory was used to derive spatial
functions describing the inhomogeneity of turbulence in the presence of a coherent vortex (Terry et al. 1992). There, coherent vortices
suppress turbulent penetration by means of strong shear flow, analogous to the role of refraction here. For the KAW system, the clo-
sure equations are much more complicated and not amenable to theWKB analysis that gave the functional form of the boundary layer
in the Navier-Stokes case. However, the closure remains useful. It provides a mathematical platform from which to calculate all as-
pects of the interaction offilament and turbulence, including the accelerated decay of turbulence within the boundary layer, the spatial
characteristics of the layer, and the amplitudes of n and  . These are necessary for calculating turbulent mixing rates of the filament
current and density.

Fig. 1.—Distortion of a kinetic Alfvén wave phase front by a sheared filament field.
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Closures can be applied to intermittent turbulence even though they rely on Gaussian statistics. The filaments, which make the
system non-Gaussian as a whole, are quasi-stationary on the short timescale of turbulent evolution. Therefore, on that scale their only
effect is to make the turbulence inhomogeneous. The fast-timescale statistics are a property of fast-timescale nonlinearity and remain
Gaussian. The closure equations are

	̂ ̃m;	 � im(r � r0) j
0ñm;	 � D  (m; 	)

@ 2

@r 2
92 ̃m;	 � D n(m; 	)

@ 2

@r 2
ñm;	 ¼

im

r
 ̃m;	

d

dr
n0(r); ð22Þ

	̂ñm;	 � im(r � r0) j
092 ̃m;	 � D

(1)
n (m; 	)

@ 2

@r 2
92 ̃m;	 � D

(2)
n (m; 	)

@ 2

@r 2
94 ̃m;	

� D(1)
nn (m; 	)

@ 2

@r 2
92ñm;	 � D(2)

nn (m; 	)
@ 2

@r 2
ñm;	 ¼

im

r
 ̃m;	

d

dr
J0(r): ð23Þ

This system is complex. The six diffusivities all contribute to the lowest order as j 0 ! 1. (The diffusion coefficients and derivatives
are not of the same order, but their product is.) Moreover, there is varied dependence on fluctuation correlations, and there are complex
turbulent decorrelation functions. For example,

D  (m; 	) ¼
1

2�i

Z þi1þ	0

�i1þ	0
d	 0

X
m 0 6¼0;m

m0

r

��
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m�m 0�W	;	 0
m0

r
 �m 0;�	 0

�

þ K1(m� m0; 	 � 	 0)P�1
m�m 0�W	;	 0 h �m 0;�	 0 ñm 0;	 0 i

�
; ð24Þ

where

Pm ¼
	
�
�
� imj0(r � r0)9

2
m � D

(1)
n (m; 	)

@ 2

@r 2
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m � D
(2)
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@r 2
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þ 	̂ � D(1)
nn (m; 	)
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@r 2
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; ð25Þ

K1(m; 	) ¼
�
�	̂ þ D  (m; 	)

@ 2

@r 2
92

m � im

r

d

dr
n0

��1�
imj0(r � r0)þ D n(m; 	)

@ 2

@r 2

�
; ð26Þ

and�W(	, 	 0) is the decorrelation rate for fluctuations at 	 0 driving 	. Expressions for the other diffusivities are given in the Appendix.
We now calculate turbulence properties from the closure equations.

4.1. Decay Time for Turbulence in the Filament

The timescale of turbulent evolution in the filament is given by 	̂. As j 0 ! 1, this is dominated by the refraction. Hence the first
terms of equation (22) and equation (23) must balance the second terms, which in turn must balance the remaining nonlinear terms. If
equations (22) and (23) are solved jointly retaining the first two terms, 	̂ � im(r � r0) j

09 as j0 ! 1. Because (r � r0) � �r and
9 � 1/�r,

	̂ � imj0 ( j0 ! 1): ð27Þ

This timescale is purely imaginary, that is, oscillatory, when derived from a balance with only the linear Alfvén terms. When the dif-
fusivities are included, it is complex. This rapid decay suppresses turbulence in the filament relative to levels outside the filament.

Fig. 2.—Boundary layer at edge of filament ( just inside r = a). External fluctuations rapidly decay across the layer.
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4.2. Alfvénic Boundary Layer Width

The width�r, as derived above, comes from independent balances in the equations for n and  and does not account for the kinetic
Alfvén wave dynamics that links n and  . To do that, equations (22) and (23) are combined into a single equation by operating on
equation (23) with�im(r � r0) j

0� D n(m, 	)@
2/@r 2 and substituting from equation (22). The resulting equation is eighth-order in the

radial derivative and unsuitable for WKB analysis. However, we can determine the radial scale as j0 ! 1 by dimensional analysis,
taking92 � @ 2/@r 2 � 1/�r2 and solving algebraically. This is the same procedure used to obtain equation (21). Formally treating�r as
a small parameter, we account for the fact that the diffusion coefficients have different scalings with respect to�r, based on different
numbers of radial derivatives operating on quantities within the coefficients. Arbitrarily takingD(2)

nn as a reference diffusion coefficient,
the definitions in the Appendix show that if we defineD

(1)
n = �rd

(1)
n ,D

(2)
n = (�r)3d

(2)
n ,D

(1)
nn = (�r)2d(1)nn ,D

(2)
nn = d(2)nn ,D  = (�r)2d  , and

D n = �rd n, then the lowercase diffusivities d
(1)
n , d

(2)
n , d

(1)
nn , d

(2)
nn , d  , and d n are all of the same order. We formally order the large pa-

rameter j0 by takingmj0 ! mj0/
 and 	̂ ! 	̂/
, where the controlling asymptotic limit becomes 
! 0. The relationship between 
 and�r
will be derived by requiring that the asymptotic balance be consistent. After all leading-order expressions are derived, 
 is set equal to 1.

Substituting these relations into equations (22) and (23) and solving, we obtain	

4

�r 4
½d  (d (1)

nn þ d (2)
nn )� d n(d

(1)
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(2)
n )��


2

�r 2
½imj0(d (1)

n þ d
(2)
n þ d n)� 	(d (1)

nn þ d (2)
nn � d  )� þ m2j02 þ 	̂ 2



 ̃(i)
m;	

¼
�
	̂ � d(1)nn þ d(2)nn

�r 2

�
S þ (imj 0 þ d n)�rSn; ð28Þ

where

Sn ¼
im

r0
 ̃m;	

d

dr
J0(r); S ¼ im

r0
 ̃m;	

d

dr
n0(r) ð29Þ

are the turbulence sources described in the previous section. The left-hand side is a dimensional representation of a Green’s function
operator that governs the response to the sources. The spatial response decays inward from the edge of the filament where both the
sources and the shear inB� are strong. Consequently, the field  ̃m;	 appearing in the sources Sn and S is understood to be characteristic
of the filament edge, and therefore ambient turbulence, while  ̃(i)

m;	
is a response accounting for the refractive decay inside the filament.

The scale length of the response�r is found by solving the homogeneous problem, that is, by setting the left-hand side equal to zero
and solving for �r. In the limit 
! 0, turbulence remains in the dynamics and contributes to �r only if 
 � �r. Otherwise, the
dynamics is laminar. The solution for �r is�




�r

�2

¼ imj0d̂2 � 	̂d̂3

2d̂2
1

þ 1

2d̂2
1

½(imj0d̂2 � 	̂d̂3)
2 � 4d̂2

1 (m
2j02 þ 	̂ 2)�1=2; ð30Þ

where d̂21 = d  (d
(1)
nn þ d (2)

nn ) � d n(d
(1)
n þ d

(2)
n ), d̂2 = d

(1)
n þ d

(2)
n þ d n, and d̂3 = d (1)

nn þ d (2)
nn � d  . This is the Alfvénic generalization

of equation (21). It is more complicated but gives identical scaling. Recalling that all the lowercase diffusivities have the same scaling
and replacing them with a generic d, the solution scales as 
2/�r 2 � mj0/d. Setting 
 = 1,

�r �
ffiffiffiffiffiffiffiffiffiffiffiffi
d=mj0

p
( j0 ! 1): ð31Þ

The generic diffusivity d can be evaluated from the definitions given for specific diffusivities in the Appendix. If the turbulent de-
correlation functions are evaluated in a strong-turbulence regime (turbulence timescales much shorter than linear timescales), then
d �  ̃m/a, reproducing equation (21).

4.3. Boundary-Layer Structure of Turbulence

Although the structure function has not been solved ( just its radial scale), its form in simpler cases illustrates the rapid decay of
turbulence across the boundary layer, from the edge inward.WhereWKB analysis is possible, the leading-order spatial Green’s function
has the form

G(r j r 0) � exp

�
�C

�
r<� r0ffiffiffiffiffiffiffiffiffiffiffiffi
d=mj0

p ���
exp

�
C

�
r>� r0ffiffiffiffiffiffiffiffiffiffiffiffi
d=mj0

p ���
; ð32Þ

whereC is a complex constant with positive real part, r< (r>) is the smaller (larger) of r and r 0, and � is a positive constant determined
by the order of the homogeneous operator. Here our dimensional solution of the problem, carried out by inverting equation (28), cap-
tures the radial integral over a structure function like that of equation (32). Solving equation (28), we obtain

 ̃(i)
m;	 � 	̂�2

��
	̂ � d(1)nn þ d(2)nn

�r 2

�
S þ (imj0 þ d n)�rSn

�
� 	̂�1 m

a
 ̃m; 	 (r0)(n

0
0 þ�rJ 0

0): ð33Þ

The temporal and spatial response to turbulent sources S and Sn at a point r0 in the filament edge appears here as a structure factor
ofmagnitude 	̂�2 multiplying the source. The product of source and response yields the value of  ̃(i) inside the boundary layer. Beyond�r
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the response decays with an envelope like that of equation (32). The part of the source proportional to n00 is essentially larger than the
part proportional to J 0

0 byO(a/�r). However, if  ̃(i) is substituted into the correlations of the equation for  0 (eq. [11]), the J
0
0 part yields

the diagonal terms. The density is given by the dimensional representation of equation (22),

ñ(i)m;	 � �
�
imj0�r þ d n

�r

��1�
S þ

D  

@r 2
 ̃m;	� 	̂ ̃m;	

�
�  ̃m;	(r0)(n

0
0 þ�rJ 0

0 )

aj0�r
: ð34Þ

4.4. Condition for Strong Refraction

The layer width�r is both the embodiment of the strong refraction of turbulent KAWactivity in the filament by the large magnetic
field shear j 0 and a condition for the refraction to be sufficiently strong to modify the scales of turbulence in the filament relative to
those outside it. With a the scale of typical fluctuations of interest, the refraction is strong when �r/aT1, or

�r

a
�

ffiffiffiffiffiffiffiffiffiffiffi
djr>a
a2mj0

s
�

ffiffiffiffiffiffiffiffiffiffiffi
 ̃jr>a
a3mj0

s
T1: ð35Þ

As a condition for strong refraction, it makes sense to use values for d or  that are typical of the turbulence in regions r > a, where
there are no intense filaments. Inside a strong filament, the reduction of turbulent KAWactivity represented by the structure factor 	̂�2

makes djr<aTdjr>a. Accordingly, the boundary-layer width �r/a is smaller than (djr>a/a2mj 0)1/2.

5. FILAMENT DECAY FROM MIXING STRESSES

The long time evolution of the filament fields  0(�) and n0(�) is governed by the mixing stresses of equations (11) and (12). These
can now be evaluated using the boundary-layer responses  ̃(i)

m;	 and ñ
(i)
m;	 derived in the previous section. Because these fields are con-

fined to the layer, the timescale � is a mixing time across the boundary layer. For the diagonal stress components, the mixing is diffusive.
The asymptotic behavior of the boundary layer yields the following dimensional equivalents: r � r0 � �r and @/@r � 1/�r, as before;Ð
dr � �r;

Ð
d	 � mj 0;  ̃m;	 �  m(t)/mj

0jt¼0; and
Ð
d	 0h ̃ñi �  (t)n(t)/mj 0jt¼0. (The latter two expressions are inverse Laplace

transform relations.) With these conventions,
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a2j02
(hb̃��mñmijt¼0 þ hb̃2�mijt¼0)(n

0
0 þ�rJ 0

0); ð36Þ

where b̃�m =  ̃m /�r. The factor j0�2 in the rightmost form makes � large; that is, mixing across the boundary layer is impeded by
refraction. The turbulent fields in these expressions are filament-edge fields, that is, they are characteristic of ambient turbulence. The
mixing time for current can be obtained by operating with92 on both sides of equation (36). On the left-hand side92 	¼0 !  	¼0/a

2,
while on the right-hand side 92 ! 1/�r 2. Consequently,

 	¼0

�J
�

X
m

1

�r 2j 02
(hb̃��mñmijt¼0 þ hb̃2�mijt¼0)(n

0
0 þ�rJ 0

0): ð37Þ

This timescale is much shorter because current, as a second derivative of  , has finer scale structure. If the filament is Alfvénic, that is,
n0 � aJ0, the mixing time is dominated by the part of equation (37) that is proportional to n00. This represents off-diagonal transport of
current driven by density gradient. The diagonal transport (driven by J 0

0) is current diffusion and is slower by a factor a/�r. In the dis-
cussions that follow, we will deal with the current diffusion timescale, although similar behavior will hold for the off-diagonal trans-
port. The mixing time for density is

@n	¼0(�)

@�
� n	¼0

�n
�

X
m

2hb̃2�mijt¼0

a2j02

�
n00
�r

þ J 0
0

�
: ð38Þ

Here the dominant component (proportional to n00) is diffusive.
We evaluate these boundary-layer mixing times relative to the two turbulent timescales of the system. These are 	�1, the turbulent

decay time in the layer, and �A = a2/b̃�jr3a, a turbulent Alfvén time outside the filament. To simplify expressions, we note that
Alfvénic equipartition implies that hb̃�ñi � hb̃2�i. We also note that  	¼0 is in the Laplace-transform domain, whereas n00 and J 0

0 are
in the time domain. Under the inverse Laplace transform,  	¼0	 �  (t, �) �  0. The scale of the filament is a, so  	¼0	 � a2J0. Sim-
ilarly, n00 � n0/a, J

0
0 � J0/a, and j0 = @/@r(B�/r) � B�/a

2. We assume the filament is Alfvénic, making n0 � aJ0. With these relations,

�n	 ¼ �92 	 ¼ �r

a

B2
�

b̃2�
�
�

a

�r

�3

�
�
B�

b̃�

�3=2

: ð39Þ
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The last two equalities make use of equation (35) and the fact that �r/a and the mixing fluctuations are referenced to ambient tur-
bulence levels for which b̃� �  ̃/a � b̃r. Equation (39) indicates that turbulent diffusion times across the mixing layer�r for both n0 and
J0 are comparable and are much longer than the decay times of turbulence in the layer. The strong-shear limit, previously indicated
by j 0 ! 1, is here replaced by B� ! 1, because with a fixed radius a strong shear means large B�. In terms of �A,

�n
�A

¼
�92 

�A
¼ �r

a

B�

b̃�
� a

�r
�
�
B�

b̃�

�1=2

; ð40Þ

indicating that these diffusion times are longer than the Alfvénic time of the ambient turbulence.
Either of the above expressions indicates that the actual lifetime of a filament (as opposed to the turbulent diffusion time across the

edge layer) is virtually unbounded, provided that direct damping due to resistivity or collisional diffusion is negligible. During a fila-
ment lifetime, turbulence must diffuse across the scale a, many �r-layer widths from the filament edge of to its center. However, in
just a layer time �n or �92 , the turbulence is reduced bymany factors of e�1, while the filament density or current inside the layer remains
untouched. Consequently, the width of the mixing layer at the edge of the filament continuously decreases even as the time tomix across it
increases. The result is that mixing never extends to the filament core. This analysis shows that structures identified in the simulations as
current filaments correlate spatially with a coherent density field, provided the density component is not destroyed by strong colli-
sional diffusion.

6. GEOMETRIC AND STATISTICAL PROPERTIES

The above analysis treats the current of the filament as localized. The current is maximum at r = 0 and becomes zero at r = a. This
makes the shear of the filament magnetic field largest in the filament edge and zero in the center. If it is true that the shear of this field
refracts turbulent KAW activity as described above, turbulence is suppressed where the shear is large. These properties are incor-
porated in the spatial variation of a single quantity known as the Gaussian curvature (Terry 2000). The Gaussian curvature is a
property of vector fields that quantifies the difference between shear stresses and rotational behavior. In rectilinear coordinates, the
Gaussian curvature CT of a vector field A(x, y) is

CT ¼
�
@Ax

@x
� @Ay

@y

�2

þ
�
@Ay

@x
þ @Ax

@y

�2

�
�
@Ay

@x
� @Ax

@y

�2

ð41Þ

(McWilliams 1984). For the total magnetic field in our cylindrical system, this can be written

CT ¼
�
r
d

dr

�
b̃r

r

�
� 1

r

@

@�
b̃�

�2
þ
�
r
d

dr

�
B� þ b̃�

r

�
þ 1

r

@

@�
b̃r

�2
� (J0 þ |̃ )2: ð42Þ

Inside the filament, turbulence is suppressed and CT is dominated by the filament field components B� and J0. Near the center, J0 is
maximum and d(B�/r)/dr = j 0 vanishes, making CT negative. Toward the filament edge, j 0 becomes maximum as J0 goes to zero,
makingCT positive. Outside the filamentCT is governed by b̃�, b̃r, and |̃. These componentsmust be roughly in balance. If they are not, the
conditions for forming a coherent filament are repeated, and a structure should be present. Therefore, in regions where there are coherent
filaments the Gaussian curvature should have a strongly negative core surrounded by a strongly positive edge.Where there are no coherent
structures, the Gaussian curvature should be small. If this property is observed in simulations, it confirms the hypothesis that shear in the
filament field refracts turbulent KAWactivity in such away as to suppress turbulent mixing of the structure.We note that the negative-core/
positive-edge structure is predicted for current filaments of either sign, positive or negative. This type of Gaussian curvature structure has
been observed in recent simulations (Smith & Terry 2006).

If the current filaments are well separated, their slow evolution relative to the decaying turbulence that surrounds them leads to a
highly non-Gaussian PDF. Assuming an initial PDF that is Gaussian with variance hJ 2

� i,

P(J ) ¼ 1ffiffiffiffiffiffi
2�

p
hJ 2
� i

1=2
exp

�
�J 2

2hJ 2
� i

�
; ð43Þ

it is possible to model subsequent evolution on the basis of the timescales derived previously and the condition for strong refraction,
equation (35). This condition stipulates that structures form where refraction is large, that is, where mj0 3  ̃jr>a/a3. Since j0 � J0/a
and  ̃jr>a/a2 � hJ 2

� i1/2, structures occur for J0 � Jc = ChJ 2
� i1/2, where C is the smallest numerical factor above unity to guarantee

strong refraction and suppression of mixing. Given the latter, filaments reside on the tail of the PDF with high J and low probabilityR1
Jc

P(J )dJ. This probability is equal to the filament packing fraction, that is, the fraction of 2D space occupied by current filaments.
If, for simplicity, we assume that all filaments are of radius a, the faction of 2D space they occupy is (a/l )2, where l is the mean distance
between filaments. Therefore,

Z �Jc

�1
P(J )dJ þ

Z 1

Jc

P(J )dJ ¼ 2

Z 1

Jc

P(J )dJ ¼
�
a

l

�2

; ð44Þ

where we assume that P(J ) is an even function. This expression gives the packing fraction as a function of the critical current Jc for
filament formation.
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It is now straightforward to construct a heuristic model for the evolution from the initial distribution. The model applies for times
that are larger than the turbulent Alfvén time but shorter than themean time between filament mergers. (Once filaments beginmerging,
their number and probability begin decreasing.) Prior to that time, the filament part of the distribution with J > Jc is essentially un-
changed, apart from the minor effects of slow erosion at the edge of the filaments. The probability that a fluctuation is not a filament also
remains fixed, but these fluctuations decay in time. This means that the variance decreases while the probability remains fixed. The rate
of decay is the turbulent Alfvén time �A. Therefore the distribution can be written

P(J ; t) ¼

N (t)ffiffiffiffiffiffi
2�

p
hJ 2
� i

1=2
exp

�
�J 2

2hJ 2
� i exp (�t=�A)

�
for J < Jc;

1ffiffiffiffiffiffi
2�

p
hJ 2
� i

1=2
exp

�
�J 2

2hJ 2
� i

�
for J � Jc;

8>>>><
>>>>:

ð45Þ

where hJ 2
� i remains the initial variance and N(t) is a time-dependent normalization constant that maintains

R Jc
0

P(J, t)dJ at its initial
value, that is,

N (t) ¼
R Jc
0
dJ exp (� J 2=2hJ 2

� i)R Jc
0
dJ exp ½�J 2 exp (t=�A)=2hJ 2

� i�
: ð46Þ

The distribution P(J, t) becomes highly non-Gaussian as t 3 �A because one part of the distribution (for J < Jc ) collapses onto the
J = 0 axis and becomes a delta function �(J ), while the other part remains fixed.

A simple measure of the deviation from a Gaussian distribution is the kurtosis,


(t) ¼
3
R
J 4P(J ; t)dJ

½
R
J 2P(J ; t)dJ �2

: ð47Þ

The evolving kurtosis can be calculated directly from equation (45). While the exact expression is not difficult to obtain, its asymptote
is more revealing. The kurtosis diverges from the initial Gaussian value of 3 as the contribution from turbulent kinetic Alfvén waves
(J < Jc) decays and collapses to �(J). After a few Alfvén times, the kurtosis is dominated by the part with J > Jc, which, because it is
stationary, represents the time-asymptotic value for �A < t < �M . The time �M is the mean time to the first filament mergers. The time-
asymptotic kurtosis is


(�ATtT�M ) ¼
6
R1
Jc

P(J )J 4 dJ

½2
R1
Jc

P(J )J 2 dJ �2
¼ 3

2

�
l

a

�2�
1þ hJ 2

� i
J 2
c

þ O

�
hJ 2
� i

3=2

J 3c

��
: ð48Þ

In writing this expression, the left-hand side of equation (44) has been expanded for J 2
c > hJ 2

� i to yield h j2�i exp (�J 2
c /2hJ 2

� i) =
(a/l ) 2Jc[1þ O(hJ 2

� i3/2/J 3)]. The time-asymptotic kurtosis is much greater than the initial Gaussian value of 3 and is characterized by
the initial value of the inverse packing fraction. Once filament mergers begin, the inverse packing fraction increases above the initial
value (l/a)2. If [l(t)/a]2 is the inverse packing fraction for t > �M , the above analysis suggests that the kurtosis will continue increasing
as (3/2)[l(t)/a]2 for late times.

We now consider the distribution of density. As shown in the previous section, the density present in the current filament also has
suppressed mixing and is therefore coherent, or long-lived. However, it is not spatially intermittent to the same degree as the current.
Alfvénic dynamics indicate that n � B, while Ampère’s law stipulates that the magnetic field of the filament extends into the region
r > a, falling off as r�1. Hence the density associated with filaments also is expected to fall off as r�1 for r > a. This spatially extended
structure makes density less isolated than current. It produces higher probabilities for low values of density than those of decaying
turbulence. This will yield a kurtosis closer to the Gaussian value of 3 than the kurtosis of the current. However, the distribution of low-
level density associated with the structure likely will not be Gaussian. It is ultimately the distribution that matters for the scattering of
radio-frequency (RF) pulsar signals.

To construct the density PDF, we seek the mapping of density onto the spatial area it occupies. We obtain this mapping for the fila-
ment density, assuming that the density of turbulence is low and has effectively collapsed onto n = 0 after a few �A, just as the current.
The density for r > a varies as n = an0/r, where n0 is the value of the density at r = a. As shown in Figure 3, the area occupied for a
given density is 2�r dr. This area is the probability when properly normalized; hence,

P(n)dn ¼ 2�r dr: ð49Þ

Writing r dr in terms of n and dn using n = an0/r, P(n) = Cn/n
3, where Cn is the normalization constant chosen so that the probability

integrated over the whole filament with its r�1 mantle equals the packing fraction, or probability offinding the filament in some sample
area.With the long, slowly decaying tail of n�3 it is necessary to impose a cutoff to keep the PDF integrable. The cutoff, which we label
nc, corresponds to the low level of decaying turbulence but otherwise need not be specified. Consequently, the normalization is de-
termined by

2Cn

Z n0

nc

dn

n3
¼ (rc=l )

2; for rc< l;

1; for rc � l;

(
ð50Þ
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where rc, the radius at which n = nc, is rc = an0/nc. The first of the two possibilities in equation (50) allows for a cutoff radius that is
smaller than the mean distance between structures (of radius rc), yielding a probability that is less than unity. If the cutoff radius is
equal to or larger than the mean separation, then the structures are space-filling and the probability is unity. Solving for Cn, the
normalized density PDF is

P(n) ¼

a2

l 2
n40

(n20 � n2c )n
3
; for rc < l or

a

l
<

nc

n0
;

n20n
2
c

(n20 � n2c )n
3
; for rc � l or

a

l
� nc

n0
:

8>>><
>>>:

ð51Þ

This distribution is defined for nc < n < n0. It captures only the contribution of filaments and ignores the density inside r = a, which
makes a small contribution to the PDF.

This distribution is certainly non-Gaussian, because it has a tail that decays slowly as n�3. However, depending on the length of the
tail, which is set by nc and n0, the distribution may or may not deviate from a Gaussian in a significant way over nc < n < n0. This is
quantified by the kurtosis,


(n0; nc) ¼
6Cn

R n0
nc

n4(n�3 dn)

C 2
n ½2

R n0
nc

n2(n�3 dn)�2
: ð52Þ

Substituting from equation (51), we find that


(n0; nc) ¼

3

4

l2

a2
1� 2n2c=n

2
0 þ n4c=n

4
0

½ln (n0=nc)�2
; for rc < l or

a

l
<

nc

n0
;

3

4

n20
n2c

1� 2n2c=n
2
0 þ n4c=n

4
0

½ln (n0=nc)�2
; for rc � l or

a

l
� nc

n0
:

8>>><
>>>:

ð53Þ

These expressions are smaller than the current kurtosis by a factor 2[ln (n0/nc)]
2. Unless n0/nc is quite large, the kurtosis may not rise

significantly above 3. This is particularly true in simulations with limited resolution, where dissipation will affect the density, either
directly through a collisional diffusion or indirectly by resistive diffusion of current filaments. Kurtosis increases if nc decreases.
However, while nc is tied to the decreasing turbulence level, regeneration of the turbulence by the r�1 mantle may prevent nc from
becoming very small. Nonetheless, mergers offilaments will decrease the packing fraction. Even if the density is space-filling initially
and satisfies the second possibility in equation (53), the mean filament separation will increase above rc at some point, and the kurtosis
will be given by the first possibility. Then as the inverse packing fraction increases above l 2/a2, the kurtosis will rise.

The n�3 falloff of the density PDF has intriguing implications for RF scattering of pulsar signals. Noting that the scattering is
produced by gradients of density, the extended density structure for r > a yields9n � n 0 � 1/r 2. We can construct the PDF for n 0 fol-
lowing the procedure used for the PDF of n. Writing rdr in terms of n 0 and dn 0 using r � (n 0)�1/2, we recover

P(n0) ¼ Cn 0=(n
0)2; ð54Þ

Fig. 3.—The probability of density outside r = a maps onto the annular area 2�r dr.
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where Cn 0 is a constant. This is a Levy distribution, the type of distribution inferred in the scaling of pulsar signals (Boldyrev & Gwinn
2003a). Further exploration of the implications of these results to RF scattering of pulsar signals remains an important question for future
work.

7. CONCLUSIONS

We have examined the formation of coherent structures in decaying kinetic Alfvén wave turbulence to determine if there is a
dynamical mechanism in interstellar turbulence that leads to a non-Gaussian PDF in the electron density. Such a PDF has been
inferred from scalings in pulsar scintillation measurements. We use a model for kinetic Alfvén wave turbulence that is applicable
when there is a strong mean magnetic field. The nonlinearities couple density and magnetic field in the plane perpendicular to the
mean field in a way that is analogous to the coupling of flow and magnetic field in reduced MHD. The model applies at scales on the
order of the ion gyroradius and smaller. We show that the coherent current filaments previously observed to emerge from a Gaussian
distribution in simulations of this model (Craddock et al. 1991) result from strong refraction of turbulent kinetic Alfvén waves. The
refraction occurs in the edge of intense, localized current fluctuations and is caused by the strongly sheared magnetic field asso-
ciated with the current. This refraction localizes turbulent wave activity to the extreme edge of the filament and impedes mixing
(turbulent diffusion) of the filament current by the turbulence. From this analysis, we conclude that the turbulence suppression by
sheared flows common in fusion plasmas (Terry 2000) has a magnetic analog in situations where there is no flow. This leads to a
further conclusion that intermittent turbulence, which is generally associated with flows, can occur in situations where there is no
flow. (By flow we mean ion motion. Electron motion is incorporated in the current.) We have derived a condition for the strength
of magnetic shear required to produce the strong refraction and suppress mixing. We show that this condition yields a prediction
for the Gaussian curvature of the magnetic field. This quantity is predicted to have large values inside the coherent current filaments
and small values everywhere else. Inside filaments, the Gaussian curvature is negative at the center and positive at the edge.

The analysis shows that long-lived fluctuation structures form in the density and magnetic field, provided damping is negligible.
Like the current filaments, these structures avoid mixing because of the refraction of turbulent kinetic Alfvén wave activity. Hence
they occur in the same physical location as the current filaments. However, the localized nature of the current filaments gives the long-
lived magnetic field an extended region external to the current. In this region the field falls off as r�1, where r is the distance from the
center of the filament. Because kinetic Alfvén wave dynamics yields an equipartition of density andmagnetic field fluctuations, we posit
that the long-lived density has a similar extended structure. As a result, the connection between coherent structure and localization that is
true for the current, and makes it highly intermittent, does not apply to the density.While there is coherent long-lived density, it need not
be localized. A similar situation holds for vorticity and flow in 2DNavier-Stokes turbulence (McWilliams 1984). To explore this matter,
we have used the physics of the coherent structure formation to derive heuristic probability distribution functions for the current and
density. As the turbulence decays, leaving intense current fluctuations as coherent current filaments, the kurtosis of current increases to a
value proportional to the packing fraction. The kurtosis of density does not become as large and could, under appropriate circumstances,
remain close to the Gaussian value of 3. However, mergers of structures in a situation with very weak dissipation could increase the
kurtosis well above 3. More importantly, however, the density PDF is non-Gaussian even when its kurtosis is not greatly different from
3. The r�1 structure external to the current gives the PDF a tail that varies as n�3. Mapping the r�1 structure to a PDF in density gradient,
the density gradient PDF decays as 1/n02, a Levy distribution. This suggests that the mechanism described here may play a role in the
scaling of pulsar RF signals.

Several aspects of this problem need additional study. It is important to adapt these results to a steady state. Generally speaking,
there is a dynamical link between decaying turbulence and turbulence in a stationary dissipation range. Hence these results, at least
qualitatively, are relevant to the dissipation range. Dissipation begins to affect the spectrum at a scale that is somewhat larger (an
order of magnitude) than the nominal dissipation scale (Frisch 1995). Structures such as these would correspond to active, fila-
mentary regions of dissipation analogous to those observed in neutral gas clouds, albeit at a much smaller scale and with no
accompanying flow shear signature. Intermittent structures can extend into the stationary inertial range, but the analysis presented
here must be modified. In the inertial range turbulence is replenished, allowing the slow mixing of a coherent structure to continue
until it is gone. Structures are also regenerated by the turbulence, and the statistics is ultimately set by a balance of mixing and re-
generation rates. The mixing rates calculated here are slow enough in strong filaments that coherent structure formation is expected
even in a steady state. There is also a possible link between structures in the larger scale range of shear Alfvén excitations and KAW
excitations. These questions will be explored in future work. While gyroradius-scale KAW turbulence may arise in astrophysical
contexts other than the ISM, the small scales make it unlikely that astrophysical observations will be available for testing this theory.
Therefore, simulations should be used to check key conclusions from the theoretical work presented here. These include the for-
mation of density structures, which was not reported in Craddock et al. (1991), the structure of the Gaussian curvature, which val-
idates the refraction hypothesis, and the existence of the r�1 structure in the density and its effect on the PDF. The effect of this type
of density field on RF scattering remains the underlying question, and modeling of the scattering with simulated fields should be
pursued.

The authors acknowledge useful conversations with Stanislav Boldyrev, including his observation that the density PDF derived
herein immediately leads to a Levy distribution in the density gradient. P. W. T. also acknowledges the Aspen Center for Physics, where
part of this work was performed. This work was supported by the National Science Foundation.

APPENDIX

Closures truncate the moment hierarchy that is generated when averages are taken of nonlinear equations. The closure we have used
is of the eddy-damped quasi-normalMarkovian variety and follows the steps of the closure calculation described in Terry et al. (2001).
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The nonlinear decorrelation is calculated consistent with the statistical Ansatz, not imposed ad hoc. The closure equations are given in
equations (22) and (23). The other diffusivities not given in equation (24) are
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1
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andPm andK1(m, 	) are given in equations (25) and (26). These expressions contain both linear wave terms and nonlinear diffusivities
and are valid in both weak- and strong-turbulence regimes. Outside filaments, where turbulence levels are evaluated to derive the con-
dition for strong refraction (eq. [35]), the turbulence is strong. The strong-turbulence limit of the above expressions yields the diffu-
sivity d that appears in equation (35).
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